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Review

The herbicide atrazine (2-chloro-4-ethylamino- 
6-isopropyl-amino-s-triazine) is the second 
most commonly used pesticide in the United 
States (Kiely et al. 2004) and perhaps the world 
(Solomon et al. 1996; van Dijk and Guicherit 
1999). It is a photosynthesis inhibitor used 
to control certain annual broadleaf weeds, 
predominantly in corn but also in sorghum, 
sugarcane, and other crops and landscaping. 
The environmental risk posed by atrazine to 
aquatic systems is presently being reevaluated 
by the U.S. Environmental Protection Agency 
(U.S. EPA 2003, 2007). One of the challenges 
in evaluating the safety of atrazine has been 
that its biological effects are highly controver­
sial, and much of the debate in the literature 
has been targeted at its effects on freshwater 
vertebrates (Hayes 2004; Renner 2004).

There have been four reviews on the biologi­
cal effects of atrazine, all of which were funded 
by the corporation that produced or produces 
this chemical (Giddings et al. 2005; Huber 
1993; Solomon et al. 1996, 2008). However, 
none of the past reviews used a meta-analytical 
approach to identify generalities in responses 
to atrazine exposure. Meta-analysis, as para­
phrased from the U.S. EPA, is the systematic 
analysis of studies examining similar end points 
to draw general conclusions, develop support 
for hypotheses, and/or produce an estimate of 

overall effects (U.S. EPA 2009a). This sort of 
weight-of-evidence approach would provide 
directional hypotheses for future work on atra­
zine. Furthermore, it would offer invaluable 
information to regulatory agencies on general 
and expected impacts of atrazine on freshwater 
vertebrates that might help resolve much of the 
controversy surrounding atrazine. Given the 
lack of a meta-analytical assessment and the 
potential importance of any atrazine effects, 
we set out to conduct an objective, qualita­
tive meta-analysis on the effects of atrazine on 
amphibian and fish survival, behavior, meta­
morphic traits, and immune, endocrine, and 
reproductive systems.

Atrazine Persistence, 
Transport, and Exposure
To place the results of this meta-analysis 
within an ecologic context and to evaluate the 
relevance of studied atrazine concentrations 
and exposure regimes, we briefly discuss the 
fate, transport, and field concentrations of atra­
zine. Atrazine is persistent relative to most cur­
rent-use pesticides. Ciba-Giegy Corporation 
(1994), the company that previously produced 
atrazine, reported no detectable change in atra­
zine concentration after 30 days in hydrolysis 
studies conducted at pHs between 5 and 7, 
and an aqueous photolysis half-life of 335 days 

under natural light and a neutral pH. Half-lives 
from field and mesocosm studies are variable 
because degradation can depend on various 
environmental conditions. Nevertheless, sev­
eral field and mesocosm studies report half-
lives > 3 months (e.g., de Noyelles et al. 1989; 
Klaassen and Kadoum 1979).

Atrazine is also relatively mobile—regularly 
entering water bodies through runoff—and 
concentrations in surface waters often peak 
after rains. Several researchers have suggested 
that atrazine can be transported 1,000 km aeri­
ally (van Dijk and Guicherit 1999). Indeed, 
atrazine has been found regularly in surface 
waters and precipitation great distances from 
where it is used, such as above the Arctic 
Circle, albeit at low concentrations (van Dijk 
and Guicherit 1999).

Wet deposition of atrazine might also 
be important in some areas. In a review on 
atmospheric dispersion of current-use pesti­
cides, van Dijk and Guicherit (1999) reported 
more studies detecting atrazine in rain or air 
(from European and U.S. sites) than any other 
current-use pesticide. The maximum reported 
wet deposition of atrazine is 154 µg/L from 
Iowa precipitation (Hatfield et al. 1996). Wet 
deposition > 1 µg/L was reported regularly in 
North America and Europe between 1980 
and the early 1990s (reviewed by van Dijk 
and Guicherit 1999). As a reference point, 
the maximum contaminant level for drinking 
water set by the U.S. EPA is 3 µg/L atrazine 
(U.S. EPA 2002).

Surface water is likely the primary source 
of atrazine exposure for freshwater vertebrates. 
Data on atrazine concentrations in surface 
water, however, are more abundant for lotic 
(streams and rivers) than lentic (lakes, ponds, 
wetlands, ditches) systems (Solomon et al. 
2008), primarily because of the extensive stream 
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monitoring conducted by the U.S. Geological 
Survey National Water Quality Assessment 
project and Syngenta Crop Protection, Inc. 
(U.S. EPA 2007). In lentic systems, water is 
not replenished as it is in lotic systems, and 
chemicals can concentrate as lentic systems dry. 
Maximum reported concentrations in lentic sys­
tems are often 2.5–10 times higher than maxi­
mum concentrations in lotic systems (Baker and 
Laflen 1979; Edwards et al. 1997; Evans and 
Duseja 1973; Frank et al. 1990; Kadoum and 
Mock 1978; Kolpin et al. 1997). Additionally, 
many amphibians develop in ephemeral agri­
cultural ponds that might receive and concen­
trate atrazine (Knutson et al. 2004).

Given the limited data on atrazine concen­
trations in lentic systems, the expected (or esti­
mated) environmental concentration (EEC) is 
a reasonable alternative for estimating concen­
trations to which aquatic organisms are likely 
to be exposed. GENEEC2 software (U.S. EPA 
2009b) calculates standardized EECs used by 
the U.S. EPA for Tier‑1 chemical risk screen­
ing. EECs are important because chemical 
registration decisions entail comparing lowest 
observable effect concentrations (LOECs) to 
EECs to determine whether higher-level mod­
eling is warranted. Hence, effects of a chemical 
near or below the EEC can affect the decision 
to approve its use.

For present atrazine application rates, EECs 
based on GENEEC2 software are typically near 
100 µg/L but can be higher for some crops. 
However, the recommended application rates 
(~ 2 lb active ingredient/acre) are now two to 
four times less than they were in the early 1990s 
(~ 8 lb active ingredient/acre). Hence, at the 
time of atrazine registration, LOECs near or 
below 500 µg/L, a feasible EEC at the time, 
might have triggered Tier‑2 testing and might 
have raised concerns about the safety of atrazine 
that could have compromised its registration. 
Given both past and present-day conditions, 
the lack of thorough data on atrazine concen­
trations in lentic systems, and the common 
use of agricultural ponds, ditches, and wet­
lands by amphibians and fish, we suggest that 
concentrations near or below historical EECs 
(≤ 500 µg/L) are ecologically relevant when 
considering the findings of this meta-analysis. 
This is arguably conservative given that atra­
zine concentrations > 500 µg/L have been regu­
larly recorded in agricultural ponds and ditches 
(Baker and Laflen 1979; Edwards et al. 1997; 
Evans and Duseja 1973; Frank et al. 1990; 
Kadoum and Mock 1978; Kolpin et al. 1997).

Methods
We selected studies for this meta-analysis 
beginning with those cited by Solomon et al. 
(2008), the most recent review of atrazine 
effects on amphibians and fish. We then sup­
plemented these studies by searching Web 
of Science (Thomson Reuters, New York, 

NY) to identify studies that might have been 
missed by Solomon et al. (2008). The search 
terms were “atrazine” combined with either 
“amphibian*” or “fish*”.

Selection criteria for inclusion of studies in 
meta-analyses can affect the conclusions that 
are drawn (Englund et al. 1999). Hence, we 
excluded from this meta-analysis studies that 
had substantial contamination in control treat­
ments or reference sites (unless a regression 
approach was taken to analyze the data); no 
presentation of statistics and within-group vari­
ance estimates; considerable inconsistencies 
that could affect the biological conclusions; 
spatial confounders associated with atrazine 
treatments; pseudoreplication; or other consid­
erable flaws in experimental design. We eval­
uated whether the exclusion of these studies 
changed the conclusion of the meta-analysis for 
each end point (Englund et al. 1999). For the 
15 response variables, the inclusion of studies 
that did not meet our criteria never altered the 
conclusions of our meta-analyses, and in some 
cases including these studies actually strength­
ened the conclusions. Because of this and space 
limitations, studies that were excluded and 
why, as well as the directions of effects in these 
studies, are provided in Supplemental Material 
available online (doi:10.1289/ehp.0901164.S1 
via http://dx.doi.org/).

To conduct a qualitative meta-analysis, we 
chose to use the vote-counting method—in 
which we tallied the number of studies that 
did and did not detect effects of atrazine—
for several reasons. We quantified the effects 
of atrazine on 15  response variables from 
> 125 studies, and vote counting, the simplest 
approach to meta-analyses, made it feasible 
to manage this complexity. Vote counting 
also facilitates identifying response variables 
that might warrant more sophisticated meta- 
analyses based on effect sizes. Finally, we chose 
vote counting because it is a conservative 
approach, biasing results toward detecting no 
overall effect (Gurevitch and Hedges 1993). 
Because most atrazine studies conducted 
analysis of variance to test for dose responses, 
despite regression analyses providing much 
greater statistical power (Cottingham et al. 
2005), we include studies that had substan­
tial trends for effects of atrazine (i.e., a non­
significant increase or decrease) with studies 
that reported statistically significant effects 
(α = 0.05). Our criteria for a trend were a 
clear dose response, a probability value < 0.1, 
or authors interpreting their nonsignificant 
result as a trend. Never did including trends 
change our conclusions of the meta-analysis.

Results and Discussion
Effects of atrazine on fish and amphibian 
survival. Many researchers have evaluated 
the effects of atrazine on fish (reviewed by 
Giddings et al. 2005; Huber 1993; Solomon 

et al. 1996) and amphibian survival (e.g., Allran 
and Karasov 2000, 2001; Brodeur et al. 2009; 
Diana et al. 2000; Freeman and Rayburn 2005; 
Rohr et al. 2003, 2004, 2006b). Our general 
conclusions from these studies are consistent 
with the conclusions of authors from previous 
atrazine reviews (Giddings et al. 2005; Huber 
1993; Solomon et al. 1996, 2008): There is not 
consistent, published evidence that ecologically 
relevant concentrations of atrazine are directly 
toxic to fish or amphibians. There are, however, 
some important exceptions (e.g., Alvarez and 
Fuiman 2005; Rohr et al. 2006b, 2008c; Storrs 
and Kiesecker 2004). Because our conclusions 
are consistent with previous reviews, we did not 
conduct a meta-analysis on survival.

Effects of atrazine on fish and amphib­
ian development and growth. Background 
on metamorphosis. A basic understanding of 
four concepts about amphibian metamorpho­
sis is necessary to interpret the effects of any 
chemical on time to, or size at, metamorpho­
sis. First, amphibians must reach a minimum 
size before they can metamorphose (Wilbur 
and Collins 1973). Second, once they reach 
this size, they can accelerate development and 
metamorphose earlier if they are in a stressful 
environment or metamorphose later if they are 
in a good environment (Wilbur and Collins 
1973). Last, metamorphosis is predominantly 
controlled by corticosterone and thyroid hor­
mones (Larson et al. 1998); thus endocrine 
system disruption can lead to inappropriately 
timed metamorphosis.

These important facts have profound 
implications for understanding the effects of 
pollution on metamorphic traits. For example, 
imagine that an amphibian shunts energy away 
from growth to detoxify a chemical and, as 
a result, reaches the minimum size for meta­
morphosis 5 days later than amphibians not 
exposed to the chemical. Once this amphibian 
reaches the minimum size for metamorphosis, 
it might accelerate its developmental rate and 
metamorphose 5 days earlier to get out of the 
stressful chemical environment. In this exam­
ple, there is no net effect of the chemical on 
time to metamorphosis despite inarguably hav­
ing considerable effects on energy use, growth, 
and development (Larson et al. 1998). A single 
chemical could delay, accelerate, or have no 
effect on timing of metamorphosis, depending 
on chemical type and concentration.

This example highlights four points. First, 
a lack of an effect of a chemical on timing 
of metamorphosis does not mean there was 
no effect on developmental rate or hormones 
that drive metamorphosis, as concluded by 
Solomon et al. (2008). Second, nonmonotonic 
dose responses in the timing of metamorphosis 
are expected and are likely common. This is 
because there are several processes occurring 
(detoxification, growth, and modulation of 
developmental timing) that can be temporally 
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offset and that likely have different (and 
potentially opposite) functional responses to 
the same chemical. Third, timing of meta­
morphosis in response to chemicals should 
be highly variable. This variation should not 
be interpreted as inconsistencies across stud­
ies (e.g., Solomon et al. 2008), because the 
complexity of metamorphosis is expected to 
induce extreme variability. Finally, unlike 
timing of metamorphosis, size at metamor­
phosis is expected to monotonically decrease 
with increasing chemical concentration across 
species and studies (controlling for time to 
metamorphosis) because energy used for 
detoxification is often taken away from that 
used for growth and development.

Effects on metamorphic traits. Our quali­
tative meta-analysis on the effects of atrazine 
on metamorphic traits is consistent with 
the predictions described above. Twelve of 
21 studies found significant effects of atrazine 
on metamorphic timing, with 7 showing an 
increase and 7 showing a decrease in time to 
metamorphosis; thus, as predicted, the direc­
tion of the effect was not consistent across 
studies (Table 1). Seven of the 21 studies had 
either clear nonmonotonic dose responses or 
were possibly nonmonotonic (Table 1). These 
results are consistent with the high variabil­
ity and high probability of nonmonotonicity 
expected for this end point.

Only two studies explicitly quantified the 
effects of atrazine on both thyroid hormones 
and timing of metamorphosis, and both showed 
significant nonmonotonic effects (Freeman 
et  al. 2005; Larson et  al. 1998) (Table 1). 
Further, Larson et al. (1998) revealed delays in 
growth and development early in life followed 
by accelerated development and early metamor­
phosis once a critical size for metamorphosis 
was reached. Additional studies that quantify 
the impacts of atrazine on thyroid hormones, 
corticosteroid hormones, and changes in growth 
and development through time are needed.

In contrast to timing of metamorphosis, 
size at metamorphosis shows a clear dose-
dependent response to atrazine exposure 
(Table 1). Fifteen of 17  studies and 14 of 
14 species showed significant reductions, or 
considerable trends toward reductions, in 
amphibian size at metamorphosis associated 
with atrazine exposure, and all of these studies 
reported effects at ecologically relevant concen­
trations based on the above criteria (Table 1). 
Similar growth reductions have been observed 
in fish (Alvarez and Fuiman 2005; McCarthy 
and Fuiman 2008). Atrazine consistently 
reduced amphibian size, which is likely to 
have adverse effects on amphibian populations 
because smaller metamorphs generally have 
lower terrestrial survival, lower lifetime repro­
duction, and compromised immune function 
(Carey et al. 1999; Scott 1994; Smith 1987). 
However, population-level effects of atrazine 

have not been empirically tested for in nature 
and thus need to be evaluated explicitly.

Effects of atrazine on fish and amphib­
ian behavior. Effects on locomotor activity. 
Twelve of 13 studies reported that atrazine 
exposure increased amphibian or fish loco­
motor activity over at least a portion of the 
concentration gradient tested (Table  2). 
Interestingly, 4 of 5 studies on fish, but none 
of the studies on amphibians, reported non­
monotonic dose responses. For fish, low con­
centrations of atrazine stimulated hyperactivity, 
but higher concentrations caused reductions 
in activity. For amphibians, hyperactivity was 
typically observed at the concentrations tested, 
but higher concentrations would likely even­
tually become toxic and reduce activity. All 
studies conducted on fish detected effects of 
atrazine on locomotor activity, whereas 88% 
of the studies on amphibians detected atrazine 
effects (Table 2).

The effects of atrazine on amphibian and 
fish locomotor activity are consistent with  
atrazine-induced changes in locomotor activity in 
mammals. Atrazine seems to cause hyperactivity 
in mammals by competing with receptors 
for the inhibitory neurotransmitter gamma- 
aminobutyric acid, by altering monoamine turn­
over, and through neurotoxicity of the dopa­
minergic system (Das et al. 2001; Rodriguez 
et al. 2005). One study showed that atrazine 
has similar effects on the nervous system of 
Ranid frogs (Papaefthimiou et al. 2003), but 
additional studies are needed that evaluate the 
mechanisms responsible for atrazine-induced 
activity changes in fish and amphibians.

Effects on antipredator behaviors. Six 
of 7 studies reported that atrazine decreased 
amphibian and fish behaviors associated with 
predation-related risk reduction (Table 2). 
Reduced predation avoidance behaviors can 
increase predation risk, whereas increased 
hyperactivity should increase encounter rates 
with predators (Skelly 1994). Hence, reduced 
risk-reduction behaviors coupled with hyper­
activity are expected to increase predation. 
However, there are no published studies on 
the effects of atrazine on predator–prey rela­
tionships of which we are aware. Given that 
atrazine might have effects on both predators 
and prey, the effects of atrazine on predator–
prey interactions are difficult to predict with­
out additional studies.

Effects on olfaction. Five of 5  studies 
reported that atrazine exposure reduced olfac­
tory sensitivity of fish in a dose-dependent 
manner (Table 2). In contrast, 3 of 3 studies on 
amphibians detected no effects of atrazine on 
olfaction at much higher concentrations than 
were tested on fish (Table 2). One study on 
amphibians stained activated olfactory neurons 
with agmatine and found no difference in the 
stimulation of olfactory neurons between atra­
zine-treated and control animals (Lanzel 2008).

Effects on other behaviors. One study 
showed that atrazine reduced amphibian 
water-conserving behaviors, which increased 
their rate of water loss (Rohr and Palmer 2005) 
(Table 2). Interestingly, both the hyperactivity 
and the reduced water-conserving behaviors 
occurred hundreds of days after atrazine expo­
sure had ceased; there was no evidence that 
these end points recovered from atrazine expo­
sure, suggesting permanent effects (Rohr and 
Palmer 2005). Amphibians are extremely sus­
ceptible to desiccation; thus atrazine-induced 
changes in water conserving behaviors would 
be expected to increase mortality risk.

Effects of atrazine on fish and amphibian 
immunity and infections. Effects on immu-
nity. Our qualitative meta-analysis revealed 
that atrazine exposure consistently reduced 
immune functioning of fish and amphibians, 
with 16 of 18 studies finding effects at ecologi­
cally relevant concentrations. However, many 
of the end points (16 of 39) were from studies 
where atrazine was tested as part of a mixture 
of pesticides, and thus the effects of atrazine 
were not isolated (Table 3). Nevertheless, atra­
zine exposure—alone (21 of 27 end points) or 
in a pesticide mixture (12 of 16 end points)—
was associated with reduced immune function­
ing, resulting in an overall reduction in 77% 
(33 of 43) of the quantified fish and amphib­
ian immune end points (including trends for 
a decrease) (Table 3). These results are some­
what conservative because in one study mul­
tiple genes associated with immunity were 
significantly down-regulated (Langerveld et al. 
2009), but they were counted as a single end 
point (Table 3).

Effects on infections. Similar to the effects 
of atrazine on amphibian and fish immunity, 
atrazine exposure was consistently associated 
with an increase in infection end points in fish 
and amphibians at ecologically relevant con­
centrations (Table 4). Atrazine elevated trema­
tode, nematode, viral, and bacterial infections 
(Table 4). Of the studies with sufficient statis­
tical power and without obvious confounders, 
12 of 14 of the infection end points increased 
or showed a strong trend toward increasing, 
indicating either more infected individuals, 
more infections per individual, faster matura­
tion, or greater reproduction of the parasite 
within the host, or greater parasite-induced 
host mortality (Table 4). As with immunity, 
these patterns should be considered with cau­
tion because many of these end points (6 of 
16) came from studies where atrazine was part 
of a mixture of pesticides tested. Nevertheless, 
atrazine exposure, alone (4 of 7 end points) 
or in a pesticide mixture or field study (9 of 
9 end points), was associated with an increase 
in infection end points (Table 4). In general, 
high concentrations of atrazine seem to be 
directly toxic to trematodes and viruses, pos­
sibly reducing infection risk for amphibians 



Atrazine meta-analysis on fish and amphibians

Environmental Health Perspectives  •  volume 118 | number 1 | January 2010	 23

(Forson and Storfer 2006a; Koprivnikar et al. 
2006; Rohr et al. 2008b), whereas more eco­
logically common concentrations seem to 
increase amphibian susceptibility, elevating 
infection risk (Forson and Storfer 2006b; 

Gendron et al. 2003; Kiesecker 2002; Rohr 
et al. 2008c).

Several atrazine studies collected immuno­
logic data only from animals that were also 
exposed to parasites, thus confounding 

immune parameters with parasite exposure and 
loads (Christin et al. 2003; Forson and Storfer 
2006b; Gendron et al. 2003; Hayes et al. 2006; 
Kiesecker 2002; Rohr et al. 2008c). However, 
in each of these studies, atrazine was associated 

Table 1. Summary of the results for the effects of atrazine on the developmental rate and size at or near metamorphosis for amphibians. 
Net effect on developmental rate Size at or near metamorphosis

Taxon, species
Effect  

direction

Conc where 
effect was 
observed 

(µg/L)

Nonmono-
tonic dose 
response

Excluded 
from 

meta-
analysis?

Effect  
direction

Conc where 
effect was 
observed 

(µg/L)

Nonmono-
tonic dose 
response

Excluded 
from 

meta-
analysis?

Conc 
tested 
(µg/L)

Atrazine 
grade

Experiment 
type

Exposure 
duration Reference

Frog
Bufo americanus ND – NA No ↓ 200 NA No 200 Comm; 

Aatrexa
PE ≤ 88 days Boone and James 

2003b

B. americanus ↓c 250, 500, 
1,000

Yes No ↓d No Conc 
differed from 

controls

No No 250, 500, 
1,000, 
5,000, 
10,000

Tech SR 3 weeks Freeman et al. 
2005

B. americanus ND – No No No data – No data Yes 1, 3, 30 Tech SR LTM Storrs and 
Semlitsch 2008

Rhinella arenarum ↑ at 100 
and 1,000,  
↓ at 5,000

100, 1,000, 
5,000

Yes No No data – No data Yes 100, 
1,000, 
5,000

Tech SR LTM Brodeur et al. 
2009

Hyla chrysoscelis ↑ 192 No No No data – No data Yes 96, 192 Tech PE, two 
pulses

≤ 129 
days

Briston and 
Threlkeld 1998b

Hyla versicolor NDe – Possibly No ↓ 200, 2,000 No No 20, 200, 
2,000

Tech PE Mean of 
13 days

Diana et al. 2000f

H. versicolor ND – NA No No data – No data Yes 1, 3, 30 Tech SR LTM Storrs and 
Semlitsch 2008

Rana clamitans ↓ 10 Yes No ↓ 10 Yes No 10, 25 Tech SR ≤ 273 
days

Coady et al. 2004f

Rana pipiens Unknowng – No Yes ↓h Not tested No No 20, 200 Tech SR LTM Allran and 
Karasov 2000

R. pipiens ND – NA No ↓ 0.1 NA No 0.1 Tech SR LTM Hayes et al. 2006
R. pipiens ND – NA No ND – NA No 5 Not 

provided
SR ETM, 

≤ 45 days
Bridges et al. 

2004i

Rana sphenocephala ND – NA No ↓ 200 NA No 200 Comm; 
Aatrexa

PE ≤ 57 days Boone and James 
2003b

R. sphenocephala ND – NA No No data – No data Yes 1, 3, 30 Tech SR LTM Storrs and 
Semlitsch 2008

Rana sylvatica No data – No data Yes ↓ Unknown; 
conc in ponds 
not provided

NA No 3, 30 Comm FS Unknown Kiesecker 2002j

Xenopus laevis No data – No data Yes ND – No No 1, 10, 25 Tech SR Mean of 
56 days

Carr et al. 2003

X. laevis ND – NA No No data – No data Yes 1, 10, 25 Tech SR ETM Du Preez et al. 
2008

X. laevis ↑ 100, 450, 
800

No No Unknownk – Unknown Yes 100, 450, 
800

Tech SR 4 weeks Freeman and 
Rayburn 2005

X. laevis Unknownl,m,n – Unkown Yes ↓o 0.01, 1, 100 Possibly No 0.01, 0.1, 
1.0, 25, 
and 100

Tech SR ≤ 75 days Kloas et al. 2009

X. laevis ↓ detected 
by regression

No Conc 
differed from 

controls

No No ↓ 20, 40, 80, 
160, 320

No No 20, 40, 80, 
160, 320

Tech SR LTM Sullivan and 
Spence 2003

X. laevis No data – NA Yes ↓ 400 NA No 400 Tech SR LTM Langerveld et al. 
2009

Salamander
Ambystoma barbouri ↑ 40, 400 No No ↓ 400 No No 4, 40, 400 Tech SR Mean of 

52 days 
exposure

Rohr et al. 2004

Ambystoma 
macrodactylum

↑ 184 No No ↓ 184 No No 1.84, 18.4, 
184

Tech SR 30 days Forson and 
Storfer 2006a

Ambystoma tigrinum ↑ 16 vs. 1.6, 
but not vs. 0

Possibly; no 
data

No ND; trend 
toward ↓p

– No data No 1.6, 16, 
160

Tech SR LTM Forson and 
Storfer 2006b

Ambystoma 
maculatum

↑ and ↓q 250 Yes No ↓ 250 No No 75, 250 Tech SR 86 days Larson et al. 1998

A. maculatum ↓ 200 NA No ↓ 200 NA No 200 Comm; 
Aatrexa

PE ≤ 57 days Boone and James 
2003e

Ambystoma 
texanum

↓ 200 NA No ↓ 200 NA No 200 Comm; 
Aatrexa

PE ≤ 88 days Boone and James 
2003b,r

Abbreviations: ↓, decreased; ↑, increased; Comm, commercial; Conc, concentration; ETM, embryo to metamorphosis, or earlier (cases where amphibians metamorphosed before atrazine exposure ceased); FS, field 
survey; LTM, early larvae to metamorphosis; NA, not applicable (used when there were too few concentrations to evaluate nonmonotonicity); ND, not detected; PE, pulse experiment; SR, static renewal experiment; 
Tech, technical. Excluded studies are listed in Supplemental Material, Table S1 (doi:10.1289/ehp.0901164.S1).
aAatrex is 59.2% inactive ingredients. bCommunity-level study. cAuthors show that atrazine modifies the thyroid axis for both X. laevis and B. americanus. dAll five atrazine concentrations tested reduced frog size relative 
to controls, but no within-group variance estimates were provided.e200 ppb developed faster than 2,000 ppb. fOnly a single egg mass; might not reflect general response. gUse only 50% of the metamorphs in the time to 
metamorphosis analysis without describing how they selected this subset of metamorphs or why they used only 50% for time to metamorphosis but 100% of the metamorphs for size at metamorphosis. hAuthors report 
an interaction between atrazine and time for frog length, indicating that control animals were larger than those exposed to atrazine by the end of the experiment. iTested as a mixture of 5 µ/L atrazine and 5 µ/L carbaryl. 
jCompared ponds with and without atrazine; effects might be due to other factors. kFrogs lose weight at metamorphosis, thus mass measurements were confounded by grouping tadpole and metamorph weights. 
lProvide no within-group variance estimate. mNo statistics provided but conclude that there was no effect of atrazine. nGraphs for developmental rate through time are indiscernible. oDetected effects in only one of two 
experiments and for females only. pp = 0.080 for regression analysis, one-tailed test. qResults depended on developmental stage; authors showed that atrazine modifies thyroxine and corticosterone hormones. rResults 
depended on drying conditions.
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with both reduced immune parameters and 
elevated parasite loads. The elevated infections 
associated with atrazine cannot be explained by 
parasites reducing immune responses. Hence, 

the parsimonious explanation for both of 
these findings is that atrazine reduced immune 
responses, which elevated infections, especially 
given that it is often beneficial for vertebrates 

to up-regulate immunity upon infection (Raffel 
et al. 2006).

Despite the apparent consistency in the 
effects of atrazine on immunity and infections 

Table 2. Summary of the results for the effects of atrazine on fish and amphibian behaviors. 

Taxon, species End point
Effect  

direction

Conc where 
effect was 

observed (µg/L) Conc tested (µg/L)
Nonmonotonic 
dose response 

Atrazine 
grade

Experiment 
type

Exposure 
duration Reference

Locomotor activity
Salamander
A. barbouri Locomotor activity after 

disturbance
↑ 400 4, 40, 400 No Tech SR 37 days Rohr et al. 2003

A. barbouri Locomotor activity after 
disturbance

↑ 400 4, 40, 400 No Tech SR Mean of 52 
days; LTM

Rohr et al. 2004

A. barbouri Locomotor activity after 
disturbance

↑ 40, 400 4, 40, 400 No Tech SR Mean of 47 
days; LTM

Rohr and Palmer 2005

A. barbouri Locomotor activity ↑ 400 40, 400, 800 No Tech PE 4 days Rohr et al. (unpublished data)
Frog
R. sylvatica Locomotor activity ↑ Two doses of 

25 separated 
by 2 weeks

Two doses of 
25 separated by 

2 weeks

NA Tech PE 1 month Rohr and Crumrine 2005a 

B. americanus Locomotor activity ND – 201 NA Tech PE 4 days Rohr et al. 2009
X. laevis Abnormal swimming ↑ 25 1, 10, 25 No Tech SR Mean of 56 

days, LTM
Carr et al. 2003

H. chrysoscelis Burst swimming ↑ Positive dose 
response

96, 192 No Tech PE, two 
pulses

≤ 129 days, 
LTM

Briston and Threlkeld 1998

Fish
Carassius auratus Burst swimming ↑ 0.5, 50 0.5, 5, 50 Possibly Tech PE 1 day Saglio and Tijasse 1998
C. auratus Burst swimming ↑ 0.1, 1, 10 0.1, 1, 10 Possibly Tech PE 1 day Saglio and Tijasse 1998
Oncorhynchus mykiss Locomotor activity ↑ 1, 10 1, 10, 100 Yes Tech PE 30 min Tierney et al. 2007
Lepomis cyanellus Locomotor activity ↑/↓ 400 but not 800 40, 400, 800 Yes, only in 

presence of 
natural prey

Tech PE 4 days Rohr et al. (unpublished data)

Larval Sciaenops 
ocellatusb

Locomotor activity and 
abnormal swimming

↑ 40, 80 40, 80 No Tech PE 72 hr Alvarez and Fuiman 2005

Predation-related risk reduction
Salamander
A. barbouri Refuge use ↓, detected 

with regression
None 4, 40, 400 No Tech SR 37 days Rohr et al. 2003

A. barbouri Refuge use ↓ 400 4, 40, 400 No Tech SR Mean of 52 
days, LTM

Rohr et al. 2004

Frog
R. sylvatica Refuge use ↓ Two doses of 

25 separated 
by 2 weeks

Two doses of 
25 separated by 

2 weeks

NA Tech PE, two 
pulses

1 month Rohr and Crumrine 2005a 

C. auratus Grouping ↓ 5, 50 0.5, 5, 50 No Tech PE 1 day Saglio and Tijasse 1998
C. auratus Sheltering in presence of 

predator cue
↓ 5 0.5, 5, 50 Possibly Tech PE 1 day Saglio and Tijasse 1998

C. auratus Grouping in presence of 
predator cue

↓ 5 0.5, 5, 50 Possibly Tech PE 1 day Saglio and Tijasse 1998

Larval S. ocellatusb Predation rates ND 40, 80 40, 80 No Tech PE 72 hr Alvarez and Fuiman 2005
Olfaction
Frog
B. americanus Chemical detection of food, 

parasites, and predator cues
ND – 201 NA Tech PE 4 days Rohr et al. 2009

Salamander
Plethodon shermani Chemical detection of food 

or sex pheromones
ND – 300 NA Tech SR 28 days Lanzel 2008

P. shermani Activated olfactory neurons ND – 700 NA Tech SR 28 days Lanzel 2008
Fish
Salmo salar Olfactory response 

(electroolfactogram)
↓ 2, 5, 10, 20 0.1, 1, 2, 5, 10, 20 No Tech PE 30 min Moore and Waring 1998

S. salar Olfactory response 
(electroolfactogram)

↓ 1 0.5, 1 No Tech PE 30 min Moore and Lower 2001

S. salar Olfactory response 
(electroolfactogram)

↓ 0.5, 1 0.5, 1 No Tech PE 30 min Moore and Lower 2001c 

O. mykiss Olfactory response 
(electroolfactogram)

↓ 10, 100 1, 10, 100 No Tech PE 30 min Tierney et al. 2007

O. mykiss Response ratio to l-histidine ↓ 10 1, 10, 100 Possibly Tech PE 30 min Tierney et al. 2007
Other behaviors
Salamander

A. barbouri Water-conserving behaviors ↓ 40, 400 4, 40, 400 No Tech SR Mean of 52 
days; LTM

Rohr and Palmer 2005d 

Abbreviations: ↓, decreased; ↑, increased; Conc, concentration; LTM, early larvae to metamorphosis; NA, not applicable (used when there were too few concentrations to evaluate nonmonotonicity); ND, none detected; 
conc, concentration; tech, technical; PE, pulse experiment; SR, static renewal experiment; Tech, technical. Excluded studies are listed Supplemental Material, Table S1 (doi:10.1289/ehp.0901164.S1).
aCommunity-level study. bLarval red drum are often found in freshwater, so they were included in this meta-analysis. cMixture of 0.5:0.5 and 1.0:1.0 atrazine and simazine; thus, total concentration of triazine was 
1 and 2 ppb, respectively. dIncreased salamander water loss and thus desiccation risk. 
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Table 3. Summary of the results for the effects of atrazine, through water column exposure, on fish and amphibian immunity. 

Taxon, species End point Effect direction

Conc where 
effect was 

observed (µg/L)
Conc tested 

(µg/L)
Nonmonotonic 
dose responsea

Atrazine 
grade

Experiment 
typeb

Exposure 
duration Reference

Salamander
A. tigrinum No. of peripheral leukocytes ↓ 16, 160 1.6, 16, 160 No Tech SR Until 

metamorphosis
Forson and Storfer 

2006b
Frog
R. pipiens Splenocyte viability ND – 2.1, 21, 210 No Tech SR 21 days Christin et al. 2003, 

2004a 

R. pipiens No. of splenocytes ↓, if using appropriate 
one-tailed test

210 2.1, 21, 210 No Tech SR 21 days Christin et al. 2003, 
2004a 

R. pipiens No. of phagocytic splenocytes ↓ postinfection 210 2.1, 21, 210 No Tech SR 21 days Christin et al. 2003a 

R. pipiens T cell proliferation ↓ in presence of 
mitogens

2.1, 21, 210 2.1, 21, 210 No Tech SR 21 days Christin et al. 2003, 
2004a 

R. pipiens T cell proliferation ↓ in absence of 
mitogens

2.1, 21, 210 2.1, 21, 210 No Tech SR 21 days Christin et al. 2003, 
2004a 

R. pipiens Absolute no. of phagocytic cells 
in spleen

↓ 2.1, 21, 210 2.1, 21, 210 No Tech SR 21 days Christin et al. 2004a 

R. pipiens No. of thymic plaques ↑, indicating reduced 
immune capacityb 

0.1 0.1 NA Tech SR Until 
metamorphosis

Hayes et al. 2006

R. pipiens No. of hemolytic plaques 
representing antibody secreting 
B cells

↓ 1, 10 1, 10 No Not 
provided

SR 4 weeks Houck and Sessions 
2006

R. pipiens No. of lymphocyte from spleen ND – 1, 10 Possibly Not 
provided

SR 8 weeks Houck and Sessions 
2006

R. pipiens No. of white blood cells ↓ 0.01 to 10 0.01, 0.1, 
1, 10

No Tech SR 8 days Brodkin et al. 2007c 

R. pipiens No. of highly phagocytic cells ↓ 0.01 to 10 0.01, 0.1, 
1, 10

No Tech SR 8 days Brodkin et al. 2007c 

X. laevis Splenocyte viability ND – 2.1, 21, 210, 
2,100

No Tech SR 21 days Christin et al. 2004a 

X. laevis Splenocyte cellularity ↓ 210, 2100 2.1, 21, 210, 
2,100

No Tech SR 21 days Christin et al. 2004a 

X. laevis Relative no. of phagocytic cells 
in spleen

↑ 21, 210, 2,100 2.1, 21, 210, 
2,100

No Tech SR 21 days Christin et al. 2004a 

X. laevis Absolute no. of phagocytic cells 
in spleen

↓ 210, 2,100 2.1, 21, 210, 
2,100

No Tech SR 21 days Christin et al. 2004a 

X. laevis T cell proliferation ND – 2.1, 21, 210, 
2,100

No data Tech SR 21 days Christin et al. 2003a 

X. laevis Downregulation of several genes 
involved in skin peptide defense

↓ 400 400 NA Tech SR Until 
metamorphosis

Langerveld et al. 2009

X. laevis Downregulation of several genes 
involved in blood cell function

↓ 400 400 NA Tech SR Until 
metamorphosis

Langerveld et al. 2009

R. sylvatica No. of eosinophil from circulating 
blood

↓ 3, 30 3, 30 No Tech SR 4 weeks Kiesecker 2002

R. pipiens No. of melano-macrophages 
from liver

↓ < 1 Do not 
know maximum 
concentration

Unknown No Comm FS Unknown Rohr et al. 2008cd 

Rana paulustris No. of melano-macrophages 
from liver

↓ 117 117 NA Tech PE 4 weeks Rohr et al. 2008c

R. paulustris No. of eosinophil from liver ND, trend toward 
decrease; p = 0.10

117 117 NA Tech PE 4 weeks Rohr et al. 2008c

R. clamitans No. of eosinophil from liver ↓ 117 117 NA Tech PE 4 weeks Rohr et al. 2008c
R. clamitans No. of melano-macrophages 

from liver
ND 117 117 NA Tech PE 4 weeks Rohr et al. 2008c

Fish
C. auratus No. of superoxide radical from 

macrophages of spleen and 
kidney

↑ 4 and 8 weeks; 
indicator of oxidative 

stress

42 42 NA Tech SR 12 weeks Fatima et al. 2007a 

C. auratus Plasma lysozyme activity ↑ at 8 and 12 weeks, 
argued as a reduction in 
resistance to infection

42 42 NA Tech SR 12 weeks Fatima et al. 2007a 

C. auratus Antibody titers against Aeromonas 
hydrophila

↓ 42 42 NA Tech SR 12 weeks Fatima et al. 2007a 

C. auratus Antioxidant enzyme in spleen 
(superoxide dismutase)

↓ at 4, 8, and 12 weeks 42 42 NA Tech SR 12 weeks Fatima et al. 2007a 

Galaxias maculatus Leucocrit ↓ 3, 50 0.9, 3, 10, 50 Possibly Tech SR 10 days Davies et al. 1994
O. mykiss Proliferative ability of circulating 

T lymphocytes (ConA)
↓ > 5,000 1,000–10,000 Possibly Tech PE 2 days Rymuszka et al. 2007

O. mykiss Proliferative ability of circulating 
B lymphocytes (LPS)

↓ > 5,000 1,000–10,000 Possibly Tech PE 2 days Rymuszka et al. 2007

O. mykiss Respiratory burst activity of 
circulating phagocytes

↓ > 2,500 1,000–10,000 Possibly Tech PE 2 days Rymuszka et al. 2007

Liza ramada and 
Liza aurata

Macrophage quality ↓ (cells degenerated) 25–280 Unknown Unknown Unknown Unknown Unknown Biagianti-Risbourg 
1990e 

L. ramada and 
L. aurata

Melanomacrophage centers in 
liver

↑ 25–280 Unknown Unknown Unknown Unknown Unknown Biagianti-Risbourg 
1990e 

Salmonidae (species 
not specified)

White blood cells ↓ 100–1,000 Unknown Unknown Unknown Unknown Unknown Walsh and Ribelin 
1975e 

Salmonidae (species 
not specified)

Lymphoid organ quality ↓ (evidence of atrophy) 100–1,000 Unknown Unknown Unknown Unknown Unknown Walsh and Ribelin 
1975e 

Salvelinus namaycush, 
Oncorhynchus kisutch

Spleen weight ↓/ no effect 1,500–13,500 Unknown Unknown Unknown Unknown Unknown Zeeman and Brindley 
1981

S. namaycush, 
O. kisutch

No. of lymphocytes ↓/ no effect 1,500–13,500 Unknown Unknown Unknown Unknown Unknown Zeeman and Brindley 
1981

Abbreviations: ↓, decreased; ↑, increased; Comm, commercial; Conc, concentration; FS, field survey; NA, not applicable (used when there were too few concentrations to evaluate nonmonotonicity); ND, not 
detected; PE, pulse experiment; SR, static renewal experiment, Tech, technical. Excluded studies are listed in Supplemental Material, Table S1 (doi:10.1289/ehp.0901164.S1).
aAtrazine was a component of a mixture of pesticides tested, and thus the experiment did not isolate the effects of atrazine. bAtrazine alone and every mixture containing atrazine increased thymic plaques. cImmune 
response stimulated by thioglycollate. dNo quantified factors correlated with atrazine could parsimoniously explain patterns in infection. eAs reported by Dunier and Swicki 1993; could not obtain original works. 
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(Table 3), much remains to be learned about 
the effects of atrazine and other chemicals on 
parasite–host interactions (Raffel et al. 2008; 
Rohr et al. 2006a). For instance, we know lit­
tle about how atrazine-induced changes affect 
population or community dynamics or most 
human diseases.

Effects of atrazine on fish and amphibian 
gonadal morphology. General morphologic 
end points. Sex differentiation is the process 
by which gonads develop into either testes or 
ovaries from an undifferentiated or bipoten­
tial gonad (Hayes 1998). This process is dis­
tinct from reproductive maturation where the 
differentiated gonad becomes reproductively 
functional (e.g., undergoes spermatogenesis 
in males). Determining if atrazine induces 
changes in gonadal morphology is an impor­
tant step in evaluating whether it can influence 
sexual differentiation.

Atrazine consistently affected male gonadal 
morphology in fish and amphibians (Table 5). 
Seven of the 10 studies including results on 
males and females reported strong trends or 
statistically significant alterations (6  stud­
ies) in at least one aspect of general gonadal 
morphology associated with atrazine expo­
sure. Alterations included discontinuous and 

multiple testes, sexually ambiguous gonadal tis­
sue, testicular ovarian follicles (TOFs), altered 
gonadal somatic index (GSI; ratio of gonad 
weight to body weight), expanded testicular 
lobules, and spermatogenic tubule diameter 
(Table 5).

Effects on ovarian morphology are gener­
ally less obvious than those on testicular mor­
phology and are typically dismissed without 
quantification. None of the three studies on 
fish or amphibians included in our meta-
analysis found significant effects of atrazine on 
ovarian morphology, suggesting that atrazine 
induces fewer gonadal abnormalities in females 
than males. However, additional studies are 
necessary to fully evaluate the effects of atrazine 
on female gonadal morphology.

TOFs as a natural phenomenon. Jooste 
et al. (2005) and Solomon et al. (2008) argued 
that experiments with high numbers of TOFs 
in control Xenopus laevis support the hypoth­
esis that TOFs are normal in some X. laevis 
populations. Although it was argued long ago 
that some anurans in some environments tran­
sition through a hermaphroditic phase during 
development (Witschi 1929), the literature we 
reviewed does not argue that adult amphib­
ians commonly have oocytes within testicular 

tissue or are naturally hermaphroditic (Eggert 
2004; Hayes 1998). Indeed, X. laevis sexually 
differentiates (without a transitional/hermaph­
roditic stage) during the larval period prior to 
sexual maturation (Iwasawa and Yamaguchi 
1984). Thus, cases of gonadal abnormalities in 
healthy adult X. laevis populations should be 
rare. Given that simultaneous hermaphroditism 
has not been previously reported in X. laevis 
despite decades of research on their reproduc­
tive biology, an equally or more plausible expla­
nation for high numbers of TOFs in control 
animals (e.g., Jooste et al. 2005; Orton et al. 
2006) is exposure to some type of unmeasured 
endocrine-disrupting contaminant.

Effects of atrazine on fish and amphibian 
sex ratios. Given that atrazine exposure has 
been proposed to feminize gonadal develop­
ment (Hayes et al. 2002, 2003), it might lead 
to female-biased sex ratios. Many studies, how­
ever, have severe methodologic errors, such 
as contaminated controls or inadequate data 
reporting [see Supplemental Material, Table S1 
(doi:10.1289/ehp.0901164.S1)], preventing 
a conclusive synthesis of the effects of atrazine 
on sex ratios. None of the sex-ratio studies used 
the most accepted and powerful approaches 
for testing for changes in sex ratios (e.g., 

Table 4. Summary of the results for the effects of atrazine, through water column exposure, on fish and amphibian parasite infections.

Taxon, species End point Effect direction
Conc where effect 

was observed (µg/L)
Conc tested 

(µg/L)
Nonmonotonic 
dose response 

Atrazine 
grade

Experiment 
type Exposure duration Reference

Salamander
A. macrodactylum Infectivity of ATV ↓ Not provided 1.84, 18.4, 

184
Dose response 
not provided

Tech SR 30 days Forson and Storfer 2006aa

A. tigrinum Percentage infected with ATV ↑ at 16 but not 1.6 
or 160

16 1.6, 16, 160 Yes Tech SR Until 
metamorphosis

Forson and Storfer 2006bb 

A. tigrinum Viral load ND; p = 0.14 – 20, 200 No Tech SR 2 weeks Kerby and Storfer 2009
A. tigrinum Mortality due to ATV ↑ Not provided 20, 200 No Tech SR 2 weeks Kerby and Storfer 2009
Frog
R. pipiens Rhabdias ranae nematode 

prevalence
ND; trend 
toward ↑

– 2.1, 21, 210 No Tech SR 21 days Christin et al. 2003c 

R. pipiens No. of adult R. ranae 
nematode

↑, clear dose 
response

21 + 210 > controls, 
210 > water control

2.1, 21, 210 No Tech SR 21 days Gendron et al. 2003c 

R. pipiens Chryseobacterium 
(Flavobacterium) 
menigosepticum infections

↑ 0.1 0.1 NA Tech SR Until 
metamorphosis

Hayes et al. 2006c,d 

R. pipiens R. ranae nematode within 
host migration

Faster 21, 210 2.1, 21, 210 No Tech SR 21 days Gendron et al. 2003c 

R. pipiens R. ranae nematode 
maturation and reproduction

Earlier 21, 210 2.1, 21, 210 No Tech SR 21 days Gendron et al. 2003c 

R. sylvatica No. of Ribieoria sp. and 
Telorchis sp.

↑ 3, 30 3, 30 No Tech SR 4 weeks Kiesecker 2002

R. sylvatica Limb deformities caused by 
Ribieoria sp.

↑ in ponds with 
atrazine

Ponds with atrazine Unknown NA Comm FS Unknown Kiesecker 2002

R. clamitans No. of Echinostoma trivolvis 
cercariae

↑ 201 201 NA Tech SR 2 weeks Rohr et al. 2008be 

R. pipiens No. of larval trematodes ↑ < 1 Do not know 
maximum Conc

Unknown No Comm FS Unknown Rohr et al. 2008cf 

R. clamitans No. of larval Plagiorchid 
trematodes

↑ 117 117 NA Tech PE 4 weeks Rohr et al. 2008c

R. clamitans No. of Echinostoma trivolvis 
cercariae

↓, but amphibians 
not exposed to 

atrazine

20, 200 20, 200 No Comm; 
Aatrexg 

PE Cercariae exposed 
for 2 hr

Koprivnikar et al. 2006h,i,j 

Fish
C. auratus Mortality due to Aeromonas 

hydrophila challenge
↑ 42 42 NA Tech SR 12 weeks Fatima et al. 2007c 

Abbreviations: ↓, decreased; ↑, increased; ATV, Ambystoma tigrinum virus; Comm, commercial; Conc, concentration; FS, field survey; NA, not applicable (used when there were too few concentrations to evaluate 
nonmonotonicity); ND, not detected; PE, pulse experiment; SR, static renewal experiment, Tech, technical. Excluded studies are listed in Supplemental Material, Table S1 (doi:10.1289/ehp.0901164.S1).
aEffect was observed when combining of 1.84, 18.4, and 184 treatments and comparing with controls; effect might be predominantly due to 184. b160 ppb was thought to reduce ATV infectivity explaining non
monotonicity. cAtrazine was a component of a mixture of pesticides tested, and thus the experiment did not isolate the effects of atrazine. dSaw this effect only when atrazine was mixed with eight other pesticides. eEf-
fect was found pooling pesticides and comparing them with control treatments. fNo quantified factors correlated with atrazine could parsimoniously explain patterns in infection. gAatrex is 59.2% inactive ingredients. 
hEffects could be due to inactive ingredients. iEffects could be due to chemicals other than atrazine that might be in the pond water used to make the stock solutions. jAll LC50s were calculated incorrectly.
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Wilson and Hardy 2002). Only four studies, 
all on X. laevis, were of sufficient quality to be 
included in our meta-analysis, and only one 
found that atrazine induced a female-biased 
sex ratio (see Supplemental Material, Table S2 
(doi:10.1289/ehp.0901164.S1)].

Effects of atrazine on fish and amphibian 
gonadal function. Chemicals that alter gonadal 
development can affect gonadal function, such 
as germ cell (e.g., spermatogenesis in males) 
and steroid hormone production (McCoy et al. 
2008; McCoy and Guillette, in press), and thus 
can lead to altered reproductive success.

Effects on testicular cell types. Spermato­
genesis is the process through which mature 
male gametes (spermatozoa) are produced 
from precursor cells (spermatogenic cells). The 

relative ratios of different spermatogenic cell 
types, rather than abundance of spermatozoa 
alone, is the most sensitive metric of altered 
spermatogenesis. Unfortunately, few studies on 
effects of atrazine on spermatogenesis met our 
inclusion criteria. Two of two studies demon­
strated that atrazine was associated with altered 
spermatogenesis and that several cell types were 
affected (Table 6). Thus, atrazine appears capa­
ble of altering spermatogenesis, but the contexts 
and generality of these effects cannot be firmly 
established. Our analysis once again highlights a 
need for more rigorous investigations.

Effects on sex hormone concentrations. 
Sex hormone production is an important 
function of gonads that can be altered by 
gonadal abnormalities (McCoy et al. 2008). 

Indeed, altered hormone concentrations are 
the defining characteristic, in many cases, of 
endocrine disruption. Six of seven studies on 
fish and amphibians document strong trends 
or significantly (five studies) altered sex hor­
mone concentrations associated with atrazine 
exposure (Table 6). Although many of these 
studies were conducted in the field and are 
therefore correlative, the consistency of these 
results across studies suggests that atrazine 
alters sex hormone production and should be 
considered an endocrine-disrupting chemical. 
A more thorough understanding of the effects 
of atrazine on hormone concentrations will 
require more detailed studies that account for 
the inherent variability of endocrine system 
processes.

Table 5. Summary of the effects of atrazine on general gonadal morphology. 

Taxon, species End point Effect direction

Conc where 
effect was 

observed (µg/L) Conc tested (µg/L)
Atrazine 

grade
Experiment 

type Exposure duration Reference

Testes
Fish
Pimephales promelas Testis size corrected for 

body size 
ND 5, 50 5, 50 Tech SR 21 days Bringolf et al. 2004a 

P. promelas Spermatogenic tubule 
diameter

↓ 250 25, 250 Tech FT 21 days U.S. EPA 2005

Frog
X. laevis Discontinuous gonads 

(abnormal segmentation) 
↑ 25 1.0, 10, 25 Tech SR ~78 days during 

larval period
Carr et al. 2003

X. laevis Ambiguous gonads (not 
obviously male or female) 

↑ 25 1.0, 10, 25 Tech SR ~78 days during 
larval period

Carr et al. 2003b 

X. laevis Testis size corrected for 
body size

↑ 10 10, 100 Tech SR 48 days Hecker et al. 2005aa 

X. laevis Sperm/area ND – 10, 100 Tech SR 48 days Hecker et al. 2005aa 

X. laevis Testis size corrected for 
body size

ND – 1, 25, 250 Tech SR 36 days Hecker et al. 2005aa 

R. clamitans Testis size corrected for 
body size

↓ in juvenile males ND–3.13 ND–3.13c Comm FS Unknown McDaniel et al. 2008c 

R. pipiens TOFs (testicular oocytes) ↑ where atrazine was detected  
  in 2003c 

ND–3.14 ND–3.13c Comm FS Unknown McDaniel et al. 
2008c,d 

Various spp., mostly 
R. clamitans

Discontinuous testes 
(abnormal segmentation) 

ND – ND–2e Comm FS Unknown Murphy et al. 2006a

Various spp., mostly 
R. clamitans

Intersex (having testicular 
and ovarian tissues)

ND – ND–2e Comm FS Unknown Murphy et al. 2006a

Various spp., mostly 
R. clamitans

TOFs (testicular oocytes) ↑ in 1 of 2 years in juveniles, 
positively correlated with max 
atrazine Conc in that year

ND–0.73 ND–2e Comm FS Unknown Murphy et al. 2006a

R. clamitans Testis size corrected for 
body size

↑ in adult males at agricultural 
sites in 1 of 2 years

ND–250 ND–2e Comm FS Unknown Murphy et al. 2006bf 

X. laevis Hermaphroditism (testicular 
oocytes, intersex, mixed 
sex)

ND – 0.1, 1, 10, 100 Tech SR ~ 65 days during 
larval period

Oka et al. 2008

Acris crepitans Intersex or testicular oocytes Trend for ↑ 
p = 0.07

Atrazine 
detections

ND–70 Comm FS Unknown Reeder et al. 1998g 

Ovaries
Fish
P. promelas Ovary size corrected for 

body size
Trend for ↓ 50 5, 50 Tech SR 21 days Bringolf et al. 2004a 

P. promelas Proportion of oocytes 
undergoing atresia

ND – 25, 250 Tech FT 21 days U.S. EPA 2005

Frog
H. versicolor, 

R. sphenocephala
Ovarian developmental stage ND – 1, 3, 30h Tech SR Through 

metamorphosis
Storrs and Semlitsch 

2008 
B. americanus Ovarian developmental rate ND – 1, 3, 30h Tech SR Through 

metamorphosis
Storrs and Semlitsch 

2008 
Abbreviations: ↓, decreased; ↑, increased; Comm, commercial; Conc, concentration; FS, field survey; FT, flow-through experiment; ND, not detected; SR, static renewal experiment, Tech, technical. Excluded studies 
are listed in Supplemental Material, Table S1 (doi:10.1289/ehp.0901164.S1).
aNo test statistics or degrees of freedom are presented; however, means and variances were presented either in the text or in a figure of the article. bXenopus are typically sexually differentiated at the gross 
morphologic level at metamorphosis; individuals in this study exposed to 25 µg/L were so sexually ambiguous they were initially considered intersex (having both testicular and ovarian issues). cAtrazine 
concentration for the nonagricultural reference site during 2003 was reported incorrectly; repeated attempts to contact the authors for clarification have not been forthcoming. dWhen atrazine concentrations were 
highest (2003), TOFs per individual occurred in higher numbers; TOFs were positively associated with atrazine, nitrate, and quantity of pesticides in a multivariate comparison, suggesting that atrazine is contributing 
to TOFs. eConcentrations were between ND and 2 except on two occasions at one site, when levels were 65 and 250 µg/L. fAuthors argued that differences in GSI between agricultural and nonagricultural sites 
cannot be due to atrazine because GSI does not correlate with atrazine concentration; however, they presented no statistics to support this claim. gThe relationship between detection of atrazine and the presence 
of one or more intersex cricket frogs approached significance (p = 0.07). hThe actual concentration of the 30-µg/L treatment was 125 µg/L.
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Effects on reproductive success. Repro­
ductive success is strongly linked to population 
persistence and is likely one of the most impor­
tant end points in toxicologic studies. Five 
studies that evaluated the effects of atrazine on 
measures of reproductive success met our meta-
analysis requirements (Table 6). Two studies 
on adult fish, Pimephales promelas, found no 

significant effect of atrazine on number of eggs 
produced, fertilization success, proportion of 
hatchlings, or larval development. However, 
one of these studies (Bringolf et al. 2004) found 
several nonsignificant, adverse trends (Table 6). 
Two of three studies on amphibians found no 
effects of atrazine on hatching success, whereas 
one showed reduced hatching success and 

delayed hatching (Table 6). Given the mixed 
results, the effect of atrazine on reproductive 
success needs to be studied more thoroughly.

Effects of atrazine on fish and amphibian  
vitellogenin. Vitellogenin is an egg yolk 
precursor protein produced in the livers of 
female fish and amphibians. Estrogens induce 
vitellogenin synthesis in both males and 

Table 6. Summary of the effects of atrazine on gonadal function.

Taxon, species End point Effect direction
Conc where effect was 

observed (µg/L)
Conc tested 

(µg/L)
Atrazine 

grade
Experiment 

type 
Exposure 
duration Reference

Testicular cell types
Frog
R. clamitans Proportion of juvenile males with 

> 50% tubules containing spermatids 
and spermatozoa

Lower at agricultural site with 
highest atrazine concentrations

Range of medians, 
0.068–0.78

ND–3.13a Comm FS Unknown McDaniel et al. 2008a 

R. pipiens Proportion of juvenile males with 
> 50% tubules containing spermatids 
and spermatozoa

Higher at agricultural site with 
highest atrazine concentrations

0.342 (mean of median 
concentrations)

ND–3.13a Comm FS Unknown McDaniel et al. 2008a 

Fish
P. promelas Proportion of primary spermatogonia ↑ 25, 250 25, 250 Test FT 21 days U.S. EPA 2005
P. promelas Proportion of secondary 

spermatogonia 
Reduced 25, 250 25, 250 Test FT 21 days U.S. EPA 2005

Sex hormone concentrations
Frog
X. laevis Testosterone in adult males ↓ 25 25 Tech SR 46 days Hayes et al. 2002b 

X. laevis Testosterone in adult males ND – 10, 100 Tech SR 48 days Hecker et al. 2005a
X. laevis Estradiol in adult males ND – 10, 100 Tech SR 48 days Hecker et al. 2005a
X. laevis Estradiol in adult males ND – 1, 25, 250 Tech SR 36 days Hecker et al. 2005b
X. laevis Testosterone in adult males ↓ 250 1, 25, 250 Tech SR 36 days Hecker et al. 2005b
X. laevis Testosterone in females ↓ at agricultural sites, negatively 

correlated with concentration of 
atrazine and breakdown product

< 0.1–4.14 < 0.1–4.14 Comm FS Unknown Hecker et al. 2004

X. laevis Testosterone in males Negatively correlated with diamino
chlorotriazine concentration (a 
product of atrazine breakdown)

< 0.1–4.14 < 0.1–4.14 Comm FS Unknown Hecker et al. 2004

X. laevis Estradiol in females ↓ at agricultural sites, negatively 
correlated with conc of atrazine 
and breakdown product

< 0.1–4.14 < 0.1–4.14 Comm FS Unknown Hecker et al. 2004

R. pipiens Testosterone in juvenile males (2003) ↓ at agricultural sites Range of medians, 
0.380–0.780 

ND–3.13a Comm FS Unknown McDaniel et al. 2008a 

R. pipiens Testosterone in juvenile males (2003) Negatively correlated with atrazine 
concentration

ND–3.13 ND–3.13a Comm FS Unknown McDaniel et al. 2008a,c 

R. pipiens 11-Ketotestosterone in juvenile males 
(2003)

Negatively correlated with atrazine 
concentration

ND–3.13 ND–3.13a Comm FS Unknown McDaniel et al. 2008a,c 

R. pipiens Testosterone in adult females (2003) Negatively correlated with atrazine 
concentration

ND–3.13 ND–3.13a Comm FS Unknown McDaniel et al. 2008a,c 

R. clamitans 11-Ketotestosterone to testosterone 
ratio in adult females (late summer 
Aug–Sep 2002)

↑ at agricultural sites Agricultural sites 
ranged from ND to 250

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans 11-Ketotestosterone to testosterone 
ratio in adult males (late summer 
Aug–Sep 2002)

↑ at agricultural sites Agricultural sites 
ranged from ND to 250

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans 11-Ketotestosterone to testosterone 
ratio in adult males (early summer 
May 2003)

↑ at agricultural sites Agricultural sites 
ranged from ND to 0.73

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Estradiol to testosterone ratio in adult 
females (late summer Aug–Sep 
2002)

↑ at agricultural sites Agricultural sites 
ranged from ND to 250

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Estradiol to testosterone ratio in adult 
males (Late summer Aug–Sep 2002)

↑ at agricultural sites Agricultural sites 
ranged from ND to 250

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Estradiol to testosterone ratio in adult 
males (early summer May 2003)

↓ at agricultural sites Agricultural sites 
ranged from ND to 0.73

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Estradiol to testosterone ratio in 
juvenile males (Jul 2003)

↑ at agricultural sites Agricultural sites 
ranged from ND to 0.73

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Testosterone in adult males (early 
summer May 2003)

↑ at agricultural sites Agricultural sites 
ranged from ND to 0.73

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Testosterone in juvenile females 
(Jul 2003)

↑ at agricultural sites Agricultural sites 
ranged from ND to 0.73

ND–250 Comm FS Unknown Murphy et al. 2006bd 

R. clamitans Testosterone in juvenile males (Jul 
2003)

↑ at agricultural sitesd Agricultural sites 
ranged from ND to 0.73

ND–250 Comm FS Unknown Murphy et al. 2006bd 

Fish
P. promelas Testosterone female ND – 25, 250 Tech FT 21 days U.S. EPA 2005
P. promelas Estradiol female Trend (up to a 44% ↓) 25, 250 25, 250 Tech FT 21 days U.S. EPA 2005e 

P. promelas Testosterone male Trend (up to a 31% ↓) 25, 250 25, 250 Tech FT 21 days U.S. EPA 2005e 

P. promelas 11-Ketotestosterone male Trend (up to a 47% ↓) 25, 250 25, 250 Tech FT 21 days U.S. EPA 2005e 

continued next page
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females in vivo, and quantification of vitel­
logenin is now an accepted screening test for 
estrogenic effects of chemicals (Scholz and 
Mayer 2008). None of the five studies (four 
on fish) found significant effects of atrazine 
on circulating or whole-body concentrations 
of vitellogenin [see Supplemental Material, 
Table S2 (doi:10.1289/ehp.0901164.S1)]. 
Hence, these data do not support the hypothe­
sis that atrazine is strongly estrogenic to fish.

Effects of atrazine on fish and amphibian 
aromatase. Cytochrome p450 aromatase cata­
lyzes the conversion of androgens to estrogens 
in gonads and is critical for maintaining a bal­
ance between these sex hormone classes. Hayes 
et al. (2002) hypothesized that decreases in 
testosterone associated with atrazine exposure 
in their study could be driven by an atrazine-
induced increase in aromatase and a concomi­
tant increase in the conversion of testosterone 
and other androgens to estrogens. This hypoth­
esis seemed reasonable because atrazine was 
known to increase aromatase in human can­
cer cell lines and in alligator gonadal–adrenal 
mesonephros (Crain et al. 1997; Sanderson 
et al. 2000). However, since 2002, several 
studies have explicitly tested whether atrazine 
increases aromatase in fish and amphibians, 
and only one of six studies included in our 
meta-analysis found that atrazine was associ­
ated with increased aromatase gene expres­
sion [see Supplemental Material, Table S2 
(doi:10.1289/ehp.0901164.S1)].

Effects of atrazine on fish and amphibian 
populations and communities. Although there 
are too few studies examining the effects of 
atrazine on freshwater vertebrate populations 

to warrant meta-analysis, and virtually all 
community-level studies infer—rather than 
test for—indirect effects (Rohr and Crumrine 
2005), the effects of atrazine on populations 
and communities warrants a brief discussion. 
Any chemical that affects physiology, growth, 
development, reproduction, survival, or species 
interactions can affect population and commu­
nity dynamics (Clements and Rohr 2009; Rohr 
et al. 2006a). However, the effects of contami­
nants might not result in immediate popula­
tion declines because the survivors of chemical 
exposure frequently have less competition for 
resources, thus providing density-mediated 
compensation for adverse effects of the chemi­
cal (Rohr et al. 2006b). Demonstrating that a 
factor is the cause of any population decline is, 
indeed, incredibly difficult (Rohr et al. 2008a). 
Rohr et al. (2006b) revealed significant and 
delayed declines in Ambystoma barbouri sala­
mander populations at 4, 40, and 400 µg/L 
atrazine, above and beyond the counteracting 
effects of density-mediated compensation. 
Although this study provided greater ecologic 
realism than many studies on atrazine, cau­
tion should be taken extrapolating these effects 
to populations in nature because this study 
was conducted in laboratory terraria. There is 
certainly a need for controlled studies on the 
effects of pesticides on wildlife populations.

Several studies have examined the effects 
of atrazine on amphibian and fish commu­
nities (Boone and James 2003; de Noyelles 
et al. 1989; Kettle 1982; Rohr and Crumrine 
2005; Rohr et al. 2008c). Many of these stud­
ies reported alterations in fish or amphibian 
growth and abundance that seem to be caused 

by atrazine-induced changes in photosynthetic 
organisms (reviewed by Giddings et al. 2005; 
Solomon et al. 2008). At ecologically relevant 
concentrations, atrazine is expected to have a 
bevy of indirect effects by altering the abun­
dance of periphyton, phytoplankton, and 
macrophytes (Huber 1993; Solomon et al. 
1996). However, none of these studies dis­
tinguish between direct and indirect effects of 
atrazine on fish or amphibians.

There are several field studies comparing 
amphibian populations or species richness 
between atrazine-exposed and unexposed hab­
itats (Bonin et al. 1997; Du Preez et al. 2005; 
Knutson et al. 2004). All of these studies are 
correlational, and none thoroughly consid­
ered or ruled out alternative hypotheses for 
the observed patterns.

Caveats. We would be remiss not to men­
tion some caveats regarding this meta-analysis. 
First, a problem with many meta-analyses is 
the “file-drawer” effect. This refers to the fact 
that researchers tend to place the results of 
experiments showing no effects in their file 
drawer, and many journals tend to publish 
fewer studies showing no effects than those 
with effects (Gurevitch and Hedges 1993; 
Osenberg et al. 1999). This might be less of 
a problem in studies on pesticides because 
these chemicals are designed to kill biota; 
thus in many cases, the null hypothesis might 
be an effect rather than the absence of one. 
Additionally, a substantial industry contingent 
works to ensure that both significant and non­
significant effects of chemicals get published. 
Indeed, in the review of atrazine by Solomon 
et  al. (2008), there were approximately 

Table 6. continued

Taxon, species End point Effect direction
Conc where effect was 

observed (µg/L)
Conc tested 

(µg/L)
Atrazine 

grade
Experiment 

type 
Exposure 
duration Reference

Reproductive success
Salamander
A. barbouri Proportion hatched and timing of 

hatching
ND – 4, 40, 400 Tech SR 37 days Rohr et al. 2003

A. barbouri Proportion hatched and timing of 
hatching

↓ and delayed hatching 400 4, 40, 400 Tech SR Mean of 
52 days

Rohr et al. 2004

Frog
R. pipiens Proportion hatched ND – 2,590–20,000 Tech SR 10 days Allran and Karasov 2001
R. clamitans Proportion hatched ND – 2,590–20,001 Tech SR 10 days Allran and Karasov 2001
B. americanus Proportion hatched ND – 2,590–20,002 Tech SR 10 days Allran and Karasov 2001
Fish
P. promelas Eggs per spawning of exposed adults Trend for a ↓ 5 5, 50 Tech SR 21 days Bringolf et al. 2004b 

P. promelas Number of spawnings of exposed 
adults

Trend for a ↓ 50 5, 50 Tech SR 21 days Bringolf et al. 2004b 

P. promelas Fertilization success of exposed adults Trend for a ↓ 50 5, 50 Tech SR 21 days Bringolf et al. 2004b 

P. promelas Proportion hatched and larval 
development of offspring from 
exposed adults

ND – 5, 50 Tech SR 21 days Bringolf et al. 2004b 

P. promelas Egg production of exposed adults ND – 25, 250 Tech FT 21 days U.S. EPA 2005
P. promelas Fertilization success of exposed adults ND – 25, 250 Tech FT 21 days U.S. EPA 2005
P. promelas Proportion hatched and larval develop-

ment of offspring from exposed 
adults

ND – 25, 250 Tech FT 21 days U.S. EPA 2005

Abbreviations: ↓, decreased; ↑, increased; Comm, commercial; Conc, concentration; FS, field survey; FT, flow-through experiment; ND, not detected; SR, static renewal experiment, Tech, technical. Excluded studies 
are listed in Supplemental Material, Table S1 (doi:10.1289/ehp.0901164.S1).
aAtrazine concentration for the nonagricultural reference site during 2003 was reported incorrectly; repeated attempts to contact the authors for clarification have not been forthcoming. bNo test statistics or 
degrees of freedom were presented; however, means and variances were presented either in the text or in a figure of the article. cAuthors reported no significant correlation between atrazine and sex hormones 
in their abstract when, in fact, these end points were negatively correlated; contrary to the authors’ conclusion, the negative correlations across sexes and age groups reported in their study are unlikely to occur 
because of a low sample size or sampling error. dAuthors argued that differences in hormone levels between agricultural and nonagricultural sites cannot be due to atrazine because hormone concentrations do not 
correlate with atrazine concentration; however, they presented no statistics to support this claim. eLow samples sizes (7–8 fish) likely precluded detecting these considerable effects.



Rohr and McCoy

30	 volume 118 | number 1 | January 2010  •  Environmental Health Perspectives

63 cases where atrazine had significant adverse 
effects and 70 cases where atrazine had no sig­
nificant effects (Rohr JR,  McCoy KA, unpub­
lished data), suggesting that the file-drawer 
effect is unlikely to be strongly biasing submis­
sion and publication of nonsignificant atrazine 
results. However, we cannot completely dis­
count the possibility that the file-drawer effect 
generated a bias toward greater publication of 
significant effects of atrazine.

Another admonishment is that some of 
the end points in this meta-analysis were not 
independent of one another. For example, we 
tallied multiple end points from a single study 
despite the possibility that they might not be 
entirely independent.

Finally, we must consider the findings of 
this meta-analysis on atrazine relative to alter­
native strategies for weed control. If the alter­
native to atrazine is another chemical, then we 
should ideally compare the effects of atrazine 
to the replacement chemical. In fact, atrazine 
might be less detrimental to freshwater ver­
tebrates than a replacement herbicide. If the 
alternative to atrazine does not entail a chemi­
cal replacement, then the effects revealed here 
might indeed be disconcerting. However, 
we also cannot ignore the benefit, if any, 
that atrazine provides. Interestingly, several 
studies estimate that atrazine increases corn 
yields by only 1–3% (reviewed by Ackerman 
2007). To adequately evaluate any chemical, 
we should ideally conduct a thorough cost– 
benefit analysis that considers the focal chemi­
cal and alternatives to its use and is based on 
comprehensive and accurate knowledge [see 
Ackerman (2007) for a review and critique of 
atrazine cost–benefit analyses].

Conclusions
As in past reviews, we found little evidence that 
atrazine consistently causes direct mortality of 
freshwater vertebrates at ecologically relevant 
concentrations, but there is evidence that atra­
zine might have adverse indirect ecologic effects. 
However, in contrast to a previous review on 
atrazine (Solomon et al. 2008), we unveiled 
consistent effects of atrazine at ecologically rel­
evant concentrations for many other response 
variables in our meta-analysis. The discrepancy 
between our findings and the conclusions of 
previous reviews could be partly a function of 
differences in criteria for including studies in the 
group used to draw general conclusions about 
atrazine effects. Past reviews (e.g., Solomon 
et al. 2008) did not clearly define their inclu­
sion criteria, did not make it clear which studies 
affected their conclusions (or how they came 
to their conclusions), and regularly dismissed 
significant effects of atrazine.

Here we reveal that, for freshwater verte­
brates, atrazine consistently reduced growth 
rates, had variable effects on timing of meta­
morphosis that were often nonmonotonic, 

elevated locomotor activity, and reduced 
antipredator behaviors. Amphibian and fish 
immunity was reliably reduced by ecologi­
cally relevant concentrations of atrazine, and 
this was regularly accompanied by elevated 
infections. Atrazine exposure induced diverse 
morphologic gonadal abnormalities in fish and 
amphibians and was associated with altered 
gonadal function, such as modified sex hor­
mone production. This suggests that atrazine 
should be considered an endocrine-disrupting 
chemical. Finally, we do not have a thorough 
appreciation of the reproductive repercussions 
of atrazine.

Several end points had enough well-
conducted studies to warrant more sophisti­
cated meta-analyses based on effect sizes (e.g., 
growth, timing of metamorphosis, activity, 
immunity, infections, gonadal abnormalities). 
Meta-analyses based on effect sizes can pro­
vide parameter and standard errors estimates 
and thus can be useful for probabilistic risk 
assessment and for predicting atrazine effects.

Although we found consistent effects of 
atrazine on freshwater vertebrates, the con­
sequences of these effects remain uncertain. 
We know little about how atrazine-induced 
changes in vertebrate growth, somatic develop­
ment, behavior, immunity, gonadal develop­
ment, or physiology affect reproduction, 
populations, gene frequencies, or communities. 
However, it was Sir Austin Bradford Hill who 
wisely stated in his address to the Royal Society 
of Medicine in 1965 that

All scientific work is incomplete [and] .  .  .  liable 
to be upset or modified by advancing knowledge. 
That does not confer upon us freedom to ignore 
the knowledge we already have, or to postpone 
action that it appears to demand at a given time. 
(Hill 1965)

Whatever action is taken in the re-evaluation  
of atrazine by the U.S EPA, we strongly encour­
age regulators to consider the consistent effects 
of atrazine on various taxa and to weigh these 
effects against any benefits atrazine provides 
and the alternatives to atrazine use.

Correction

Corrections have been made from the origi­
nal manuscript published online: Criteria 
for identifying results showing “substantial 
trends” has been clarified; the number of 
studies has been corrected in the text; and 
the “effect direction” for relevant studies has 
been corrected in Tables 1, 3, and 5. 
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